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Understanding how opinions spread through a community or how consensus emerges in noisy environments
can have a significant impact on our comprehension of social relations among individuals. In this work a model
for the dynamics of opinion formation is introduced. The model is based on a nonlinear interaction between
opinion vectors of agents plus a stochastic variable to account for the effect of noise in the way the agents
communicate. The dynamics presented is able to generate rich dynamical patterns of interacting groups or
clusters of agents with the same opinion without a leader or centralized control. Our results show that by
increasing the intensity of noise, the system goes from consensus to a disordered state. Depending on the
number of competing opinions and the details of the network of interactions, the system displays a first- or a
second-order transition. We compare the behavior of different topologies of interactions: one-dimensional
chains, and annealed and complex networks.
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I. INTRODUCTION

An interesting application concerning the structure of so-
cial networks �1,2� is the modeling of the dynamics of opin-
ion formation. Specific measurements that characterize the
statistics behind the existence of different groups and affili-
ations within human populations justify modeling such an
aspect of human behavior. In this field the idea is to find
simple rules of interactions behind the nodes or agents, each
of which carries its own changing color or opinion, trying to
reproduce the emergence of complex patterns observed in
reality.

Such opinions can be defined by a finite number of inte-
gers as in the model proposed by Sznajd-Weron and Sznajd
�3� or can even be represented by real numbers, having a rich
spectrum and opening the possibility for having as many
opinions as agents; as in the model proposed by Deffuant et
al. �4�. In both cases the proposed dynamics has a natural
absorbing state or consensus, in which all the agents share
the same opinion. Other models such as the one by Hegsel-
mann and Krause �5�, the voter model �6�, Galam’s majority
rule �7�, and Axelrod’s model �8� are reviewed in Ref. �9�. As
pointed out there, very few and nonconclusive results exist
for the consensus models on complex networks.

In this work, we present a general model, where opinions
are represented by vectors with real components and the
agents interact with a nonlinear rule. We propose, for the
abstract space of human opinions, a dynamical rule where
each agent has an opinion vector that is fixed in modulus.
Every time step an agent interacts with its neighbors and
assumes a new value for its opinion vector that is a function
of the average direction of its neighboring agents plus an
added noisy term. The resulting behavior presents two im-
portant characteristics: �i� although the model allows a con-

tinuous change from one opinion to some other, the interac-
tion favors extremely decided states over undecided states,
and �ii� the system ubiquitously evolves into coordination
and grouping without the need of leaders or centralized con-
trol. The fact that the modulus of the opinion vector is con-
stant describes the strength of an opinion about a specific
topic at the expense of the other beliefs. According to our
model, undecided agents �i.e., those that do not have a strong
belief in one particular opinion� cannot affect the ones with a
strong opinion. This type of interaction is somewhat different
from the one used in models of opinion formation, which
usually consists in weighted averages. Similar rules have
been proposed, for example, in Ref. �10� to explain how very
large populations are able to converge to the use of a particu-
lar word or grammatical construction without global coordi-
nation.

We study the transition to consensus as a function of
noise. We find that different types of transitions with or with-
out hysteresis are observed depending on the dimension of
the opinion vector. Additionally, we observe that the transi-
tion is controlled by the interaction dynamics and is indepen-
dent of the correlations of the network topology.

We start in Sec. II by describing in detail the proposed
model for interactions between opinions. In Sec. III, we
present the results of the transition to consensus as a function
of the noise for one-dimensional �1D� chains, and annealed
and complex networks. Conclusions are given in Sec. IV.

II. OPINION MODEL

The system comprises a fixed number of N agents. Every
agent i is characterized by its own opinion vector an

�i� of n
=1, . . . ,O opinions. Each element of this vector corresponds
to a different opinion about the same topic. Negative values
of the elements are not allowed. The sum of the vector ele-
ments of an agent is 1: �n=1

O an
�i�=1. For instance, agent j

favors communism with 20% and capitalism with 80%
�given O=2�: a1

�j�=0.2, a2
�j�=0.8. Each time step every agent

actualizes its opinion vector by comparing its values to the
ones of its ki nearest neighbors. These other agents are cho-
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sen by the topology of the graph, and the agent updates its
opinion vector due to the following rule:

ân
�i��t� = �

l=1

ki

an
�i��t�an

�l��t� + kig�t� , �1�

where g�t� presents a stochastic variable, distributed uni-
formly in the interval �0,��. With this exclusively positive
noise we are assured that an

�i��t��0. This stochasticity can be
interpreted to be due to misunderstandings among the agents,
the spread of wrong information, or other perturbing actions.

The interaction term in this model is of second order.
Thus, in a noiseless environment, the agents tend to have the
same stronger opinion. The factor ki avoids that agents with
more connections feel less noise. In order to guarantee that
the sum of opinions is equal to 1, the vector is normalized
afterward, similarly to the model presented in Ref. �11�,

an
�i��t + 1� =

ân
�i��t�

�
m=1

O

âm
�i��t�

. �2�

In order to elucidate the principal properties of the update
rule given by Eqs. �1� and �2�, we examine in detail the
noiseless interactions between three types of agents with dif-
ferent characteristic values of a two-dimensional opinion
vector �O=2�: namely, a1= �0.8,0.2�, a2= �0.5,0.5�, and a3

= �0.2,0.8�. First, an interaction between an agent having a1

with another having the same a1 results in �0.94, 0.06�—
interactions between agents with the same dominant opinion
strengthen their belief in this opinion. a1 with a2 yields �0.8,
0.2�—interactions with “undecided” agents are ineffective in
the sense that agents without dominant opinion are not able
to convince another agent. On the other hand, this interaction
will have a substantial effect on the undecided agent; i.e.,
undecided agents are convinced easily. The interaction be-
tween a1 and a3 results in �0.5, 0.5�—interactions of agents
with opposite opinions lead them to become less decided.

At the beginning of a simulation the opinion vectors are
initialized either randomly or by consensus: for random ini-
tialization we randomly select for each opinion component
of each agent a number between 0 and 1. The opinion vectors
are normalized afterwards according to Eq. �2�. The other
way to initialize the system �consensus� is by setting to 1 the
first element of each vector and fill the rest with 0’s.

The main parameter of this model is given by the maxi-
mal noise � which we will call from now on the control
parameter. Its role corresponds to the one of a temperature in
physical systems. In a social system, the noise represents any
internal or external interference in the communication among
the agents. Other free parameters of the system are given by
the number of agents, N, the number of opinions, O, and the
number of agents, ki, to interact with per time step. The last
parameter can be different for distinct agents depending on
the topology of the actual network.

A simple mean-field solution of the model without noise
can be derived. Suppose a state where all agents have the
same values in their opinion vectors. Thus the index of the
agents can be suppressed, an

�i��t�=an�t� and an
�i��t+1�=an�t

+1�, and Eqs. �1� and �2� can be summarized. In the case of
two opinions the equations correspond to the map,

a1�t + 1� =
a1

2�t�
a1

2�t� + a2
2�t�

, a2�t + 1� =
a2

2�t�
a1

2�t� + a2
2�t�

. �3�

The fixed points of these equations are �a1 ,a2�
� ��0,1� , �1,0� , �0.5,0.5�� where the first two are stable and
the last one is unstable. The solutions for O opinions are in
��1,0,0,…�,�0,1,0,0,…�,…,�0,0,…,0,1�� with all an stable. All
other solutions have at least one unstable element of the
opinion vector, and thus the unstable element influences the
other ones until an absorbing state with one opinion totally
dominant is reached.

III. RESULTS

A. Annealed interactions

First, we present simulations of the model without fixed
topology. Each time step, a simulation runs over all agents.
For each of them and at each time step, two new random
partners are chosen to interact. We chose an interaction with
two other agents �ki=k=2� in order to facilitate the compari-
son of this case with the one of a one-dimensional chain
which will be explained in the following section. The an-
nealed approach avoids long-term behavior, and the distribu-
tion of opinions reaches the stationary state fast. Because the
interacting units are a sampling of the whole system, it is
expected that this annealed approximation should behave
similar to a mean field.

The results reveal that the system can reach two different
absorbing states. At small values of the control parameter
�maximum noise ��, one opinion completely dominates the
system, omax. For a noise � larger than a certain value, each
opinion remains with the same frequency 1/O. The order
parameter D is the frequency of agents which have an opin-
ion vector with the same dominant opinion, being itself
dominant in the system. More precisely, for each agent we
search its strongest opinion and then count, for each opinion,
the number n of agents with this opinion as their dominant
one. The largest value nD, and so the most dominant one of
the system, determines D=nD /N. �D	 means that we average
D over many time steps. This order parameter is normalized,
so that it is unity if all agents have the same dominant opin-
ion, a state we call the consensus state. The value 1/O cor-
responds to a uniform distribution of opinions. A transition
occurs between consensus and uniform distributions, when
�D	 goes from 1 to 1/2 in the case of two opinions �Fig.
1�a��.

The transition becomes more abrupt for larger population
sizes. A transition point characteristic for the jump from the
consensus to the uniform states is located at �c
0.5, in-
creasing with the population size. This transition seems to be
a phase transition of second order. We carried out finite-size
scaling in order to obtain the critical exponents �Fig. 1�b��.
Near the critical point the curves coincide using the scaling
relations,
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�D	N−�/� = �� − �c�N1/�, �4�

with �
2.4±0.1, �=0.15±0.05, and the critical noise �c
=0.52.

Figure 2 shows that in the case of annealed interactions
the transition becomes of first order for simulations with an
opinion vector of more than two opinion elements. The fluc-
tuations do not increase at the transition point. Now, the tran-
sition from the consensus to the uniform state depends on the
initialization and is much more abrupt. If the initialization is
random, the system jumps to the consensus state at lower
values of � than in the case of an initialization with consen-
sus in one opinion. A transition with a typical hysteresis oc-
curs at lower values of � if we increase the dimension of the
opinion vector.

Note that D gives us the fraction of agents with dominant
opinion �omax� but does not contain information about aomax

,
the magnitude of the component associated with omax. In Fig.
2�d� we plot aomax

vs � for the same simulations presented in
Fig. 2�c�. aomax

is larger for lower values of �, and below a
certain �c consensus is observed for both kinds of initializa-
tions, only when a large value of aomax

is reached. This is a
nice feature of our model: consensus and resolution emerge
together in the system. That is, the agents can only make up
their minds for a preferred opinion when consensus is
achieved through the entire system.

B. One-dimensional topology

If we put the agents on a one-dimensional lattice with
periodic boundary conditions, or, in other words, a chain, the

results become different. First, we concentrate on the case of
ten opinions and no noise ��=0�: The system is now highly
dependent on the initial state. A random initialization of the
opinion vectors leads to the situation depicted in Fig. 3�a�.
The same amount of each opinion seems present in the sys-
tem during the evolution. The system organizes itself by re-
arranging its opinion vectors to form local clusters of differ-
ent sizes. In one cluster the same opinion dominates for all

FIG. 1. Finite-size scaling of the transition in a system with a
two-dimensional opinion vector with random interactions. The fig-
ure compares the frequency of agents with the same dominant opin-
ion versus the noise � for different population sizes N. �a� Original
data. �b� Finite-size scaling. Each point corresponds to an average
over 10–20 runs with different random seeds.

FIG. 2. The transition of the system for different numbers of
opinions, O, and different initial conditions. The population size is
500. �a� The outcome of a system of two opinions �circles� is inde-
pendent of its initialization. �b� In the case of three opinions �dashed
line�, the curves present a hysteresis and the results are different if
the field is initialized randomly �squares� or with the system being
already in the consensus state �stars�. �c� A system with an opinion
vector containing ten opinions also exhibits hysteresis �dash-dotted
line�. �d� Average value of the dominant opinion aomax

vs � for the
same simulation as in �c�.

FIG. 3. Ten opinions on a one-dimensional chain. These results
illustrate simulations without noise ��=0� and a system of 1000
agents. �a� The figure zooms in on the first 200 agents of the popu-
lation, where each line corresponds to a different element of the
opinion vectors. Only the first five opinions are displayed. The
agents form local clusters of different dominant opinions. �b� The
cluster sizes distribute following an exponential decay.
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agents. Each agent has a well-pronounced dominance of an
opinion �its value being nearly 1�, and the interfaces between
clusters of different dominant opinions are very sharp. These
clusters develop fast after the beginning of the simulation.
The distribution of cluster sizes follows the exponential de-
cay of a Poisson distribution �Fig. 3�b��. The results with �
=0 are qualitatively the same for different numbers of opin-
ions, O.

Noise ���0� leads to a slow increase of one of the ten
opinions with time. The dominant opinion absorbs more and
more of the losing opinions. Figure 4 illustrates how the
largest cluster of the system temporally evolves for �=0.2.
As also can be recognized in this figure, the time to reach
consensus can be really long, even in a small system of 1000
agents.

With nonzero but small noise, the information propagates
slowly through the sample. Because of that, the time to reach

the absorbing state is much larger than in the case of random
interactions. Next we consider a system consisting of 1000
agents, which have opinion vectors of two dimensions. The
normalization of Eq. �2� allows us to focus only on the tem-
poral behavior of one of each agent’s opinion without loss of
information. Figure 5 exhibits this time behavior for noises
�=0.05,0.2,0.35,0.45 during the first 100 000 time steps.
Each agent’s first opinion is depicted by a color �gray tone�
which corresponds to its value and evolves beginning at the
bottom. At low noise values stable clusters seem to form.
The size of the clusters becomes smaller with decreasing �.
Nevertheless, these clusters are not stable, and the system
reaches the consensus state after a finite time. For �=0.05
and �=0.2 the size of clusters with the second dominant
opinion is larger, indicating that at the end this opinion will
control the system. The larger the size of a cluster, the longer
it takes to break it. At values of � larger than �=0.3, strong
fluctuations control the system and consensus begins to be-
come unstable. For values around �=0.3 one opinion still
dominates and clusters appear and disappear. At larger � the
opinions have values around 0.5 for all agents which do not
fluctuate much.

It is interesting to calculate the number of time steps the
system needs to reach its final state. In a system of two
opinions we carried out various simulations with the same
value of noise, �, and a population size of N=100. Each
simulation begins with an initialization of randomly distrib-
uted opinions but a different random seed. Figure 6 shows
the distribution of times needed to reach the consensus state
for a system. The distribution decreases exponentially. The
distribution becomes broader with decreasing values of �,
where �=0 should correspond to a flat distribution.

As in the case of random interactions, a transition occurs
from the consensus state to the one of a uniform distribution
of the opinions. Figure 7�a� illustrates the variation of �D	
with � for different system sizes. As shown in Fig. 7�b�, by

FIG. 4. The size of the largest cluster increases in time until it
reaches the population size N=1000. Here, we see the results of
different random initializations of the system on a chain. The num-
ber of opinions is 10, and the noise �=0.2.

FIG. 5. �Color online� Graphical illustration of the temporal behavior of the system on a chain. The color �gray tone� corresponds to the
value of the first of the two opinions of the system. The simulations run over 100 000 time steps, drawing each 1000 iterations a new point
on the vertical axis beginning at the bottom. The horizontal axis depicts the location of each agent on the chain, altogether consisting of 1000
agents. The noise � is 0.05 in �a�, 0.2 in �b�, 0.35 in �c�, and 0.45 in �d�.

SCHWÄMMLE et al. PHYSICAL REVIEW E 75, 066108 �2007�

066108-4



performing a finite-size scaling analysis through Eq. �4�, the
collapse of all curves is obtained when we use the critical
exponents �=2 and �=2.

C. Complex networks

In this section we compare the behavior of the opinion
model if the agents interact with their k nearest neighbors on
different network topologies. We study two different kinds of

scale-free networks: i.e., networks with a power law degree
distribution k−�. Those are the Barabási-Albert �AB� network
�1� and the Apollonian network �12�. The networks have con-
siderable topological differences, which can be expressed in
terms of their clustering coefficient C. This coefficient is the
average probability that the neighbors of a node are con-
nected among them. The BA network has a clustering coef-
ficient C, which depends on the network size as N−1. It is
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FIG. 8. �Color online� �a� Influence of the topology of networks
on the transition to consensus �D=1� as a function of noise ���. The
transition on two different scale-free networks, the Apollonian
�solid line� and the Barabási-Albert network �BA, triangles�, is
similar to the one observed for annealed interactions �AI, plus
signs�, and differs from the transition on a regular lattice �circles�.
In the three insets we plot the value of the dominant opinion, aomax
vs time. �b� Comparison of the behavior of aomax

�t� on the four
networks: Apollonian �solid line�, Barabási-Albert �BA, dotted
line�, annealed �AI, dashed line� and regular �long dashed line� for
a fixed noise ��=0.2�. One observes that for this noise, which is
below the critical noise, in the regular network the emergence of
consensus takes longer than in scale-free and annealed interactions,
which have similar behavior �three upper curves�. �c� Near below
the transition, for �=0.4, we compare the response of the regular
and the Apollonian network. It is observed that for the former there
is an intermittency among consensus D=1 and aomax

=0.79 and not
consensus D=0.5 and aomax

=0.5. This behavior is not observed in
the complex networks. �d� Above the transition ��=0.6� the con-
sensus is broken and the dynamics of the opinion aomax

vs time
behaves similarly in regular and complex networks. All simulation
runs are with systems of 124 agents.

FIG. 6. Histogram of the time steps needed to reach the consen-
sus state. Each curve corresponds to simulations with the same
parameters: 100 agents, 2 opinions, random initialization. For each
value of the noise parameter we carried out 200 000 runs with dif-
ferent random seeds.

FIG. 7. �a� The fraction of agents with the same dominant opin-
ion versus � are compared for different population sizes N in a
system of two opinions, where only the nearest neighbors on a
chain interact. �b� Finite-size scaling of the transition.
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independent of the degree of the nodes. In contrast, the Apol-
lonian network has hierarchical structure with C depending
on the degree of the node as a power law of the degree and
its average value is high �C
0.8� and independent of the
network size N. Both types of scale-free networks, with and
without hierarchical structure, have shown to be good mod-
els for rather different kinds of social interaction networks,
from social collaboration networks �13� to networks of
sexual contacts �14�.

Further, we show that despite the structural differences of
these networks, the formation of consensus depends mainly
on the noise and is independent of the specific topology of
the scale-free network studied in the case of two opinions.
The transition to consensus as a function of noise for the two
scale-free networks seems to belong to the same type of tran-
sition as in the case of annealed interactions. In contrast, we
compare the behavior of the model with a regular network
with k=6 on a chain �in the previous section we had k=2�,
adding interactions up to the third nearest neighbors. The
transition from consensus to a uniform distribution on the
regular network differs from the transition of complex net-
works and annealed case and presents similar behavior as the
one reported in previous sections for a chain.

In Fig. 8�a� we show �D	 vs � for the model on the BA
�triangles� and Apollonian networks �solid line�, compared to
the result of annealed interactions �plus signs� and the regu-
lar network �circles�. The results of the figure represent the
average over 20 realizations on systems of N=124 agents
and 2 opinions. Near the transition, the fluctuations on the
regular lattice strongly increase, as opposed to the annealed
interaction and to BA and Apollonian networks. This is be-
cause the system presents an intermittency near the transition
point ��
0.4�. We observe this intermittency of the dynam-
ics in Fig. 8�c�, comparing the value of the dominant opinion
aomax

vs time, for the Apollonian and the regular network
with �=0.4. Above the critical noise, there is no consensus
and the fraction of agents with dominant opinion is �D	

1/2. At these values of �, the response of the system is
similar for scale-free and regular networks, as is shown in
Fig. 8�d� with �=0.6.

Above the critical noise there is no way for the agents to
achieve global coordination. In this situation, the dynamics is
dominated by local interactions, and thus the topology of the
system has little effect on this regime. Below the critical

noise, global coordination becomes possible. However, the
low dimensionality of the regular lattice leads to the inter-
mittent behavior observed in the panel 8�c�.

IV. CONCLUSION

Starting from a model based on interactions with a term of
second order, we analyzed its behavior for different topolo-
gies: random, regular, and complex ones. Depending on the
control parameter, the noise �, two different absorbing states
control the system. Its behavior changes from consensus to a
uniform distribution of opinions. Despite the rather simple
approach to take into account such simple interactions, a rich
variety of results can be reported depending on the dimen-
sion of the opinion vector. The results show that an opinion
is kept �for systems with more than two opinions� and the
parameters need to be adjusted crucially to change the state
�hysteresis�. This occurs at different dimensions O of the
opinion vector, depending on the topology of interactions.

The response of the system to approach consensus has its
origin in the model dynamics as opposed to the particular
features of the network. An important characteristic of the
transition to consensus is the dimension associated with the
space of agent interactions. The dynamical response of the
opinion model for both scale-free networks is similar to the
response observed for annealed interactions and each of
these cases represents long-range interactions. In contrast,
differences are reported with a regular lattice, which has spa-
tial dimension 1, associated with nearest-neighbor interac-
tions.

As was previously observed for the Sznajd-Weron–Sznajd
model of opinion formation, for the general model that we
present here, the response of the system in terms of opinion
formation is qualitatively the same for a deterministic scale-
free network as well as for a random scale free network. This
implies a clear advantage for an analytical treatment in a
similar way as was done for the Sznajd-Weron–Sznajd model
�15�.
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